Fuzzy development of Mean and Range control charts using statistical properties of different representative values

نویسندگان

  • H. Moheb Alizadeh
  • Seyyed M. T. Fatemi Ghomi
چکیده

This paper develops Mean and Range control charts in fuzzy environment using different transformation methods. It is assumed that the observations of each sample are fuzzy random variables, which have triangular membership functions. After calculating fuzzy mean and fuzzy range of each sample using fuzzy arithmetic, their representative values are calculated exploiting the transformation methods. Then, using statistical properties of the obtained representative values and basic structure of Shewhart control charts, new Mean and Range control charts are constructed to monitor the process mean and variation. After that, the power of control charts constructed based on different transformation methods are examined applying average run length (ARL) criterion. According to this criterion, it is concluded that, contrary to the previous claim, these different transformation methods lead to mean and rang control charts with various performances. Moreover, it is represented that the value of α – level has significant influence on the performance of obtained control charts. Finally, it is derived that incorporating fuzziness into observations results in less powerful control charts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of α-cut fuzzy X control charts based on standard deviation and range using fuzzy triangular numbers

Control charts are one of the most important tools in statistical process control that lead to improve quality processes and ensure required quality levels. In traditional control charts, all data should be exactly known, whereas there are many quality characteristics that cannot be expressed in numerical scale, such as characteristics for appearance, softness, and color. Fuzzy sets theory is a...

متن کامل

Nonparametric Shewhart-type Quality Control Charts in Fuzzy Environment

Nonparametric control charts are presented in order to figure out the problem of detecting changes in the process median (or mean)‎, ‎or changes in the variability process where there is limited knowledge regarding the underlying process‎. ‎When observations are reported imprecise‎, ‎then it is impossible to use classical nonparametric control charts‎. ‎This paper is devoted to the problem of c...

متن کامل

Determining the Sample size for Estimation of the CCC-R Control Chart Parameters Based on Estimation Costs

In today's highly competitive industrial environment due to fast technology development, quality practitioners will to detect out-of-control situations and take actions whenever is necessary as soon as possible. Accordingly, new statistical procedures have been enhanced incessantly both to handle high yield processes along with looking for methods of minimizing all quality cost. CCC-r chart, th...

متن کامل

طراحی یک سیستم فازی بعنوان جایگزینی برای نمودار کنترل مشاهدات انفرادی

 Shewhart charts are the main tools for statistical process control. They are used for detecting assignable causes which affect quality of process output. From them, X and MR charts are two univariate control charts for monitoring mean and variation of measurable quality characteristics. The main drawbacks of these charts are: weakness of X chart against non-normal distribution of process data,...

متن کامل

Fuzzy rules for fuzzy $overline{X}$ and $R$ control charts

Statistical process control ($SPC$), an internationally recognized technique for improving product quality and productivity, has been widely employed in various industries. $SPC$ relies on the use of control charts to monitor a manufacturing process for identifying causes of process variation and signaling the necessity of corrective action for the process. Fuzzy data exist ubiquitously in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Intelligent and Fuzzy Systems

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2011